# Mixed Nucleobase, Amino Acid Complexes of Pt(II). Preparation and X-ray Structure of *trans*-[(CH<sub>3</sub>NH<sub>2</sub>)<sub>2</sub>Pt(1-MeC-N<sup>3</sup>)(gly-N)]NO<sub>3</sub>·2H<sub>2</sub>O and its Precursor *trans*-[(CH<sub>3</sub>NH<sub>2</sub>)<sub>2</sub>Pt(1-MeC-N<sup>3</sup>)Cl]Cl·H<sub>2</sub>O

FERDINAND J. PESCH, HANS PREUT and BERNHARD LIPPERT\* Fachbereich Chemie, Universität Dortmund, D-4600 Dortmund (F.R.G.) (Received June 12, 1989; revised October 4, 1989)

## Abstract

The preparation and crystal structures of two Pt(II) complexes are reported. trans-[(NH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>Pt- $(1-MeC)Cl]Cl H_2O$  (1) and trans- $[(NH_2CH_3)_2Pt(1-$ MeC)(gly)]NO<sub>3</sub>·2H<sub>2</sub>O (2) with 1-MeC = 1-methylcytosine and gly = glycine anion are considered a precursor (1) and a product (2) of a hypothetical cross-linking reaction of a trans-diamineplatinum(II) moiety with a nucleic acid and the amino terminus of a protein, peptide, or amino acid. Compound 1 crystallizes in the space group  $P\overline{1}$  and has cell dimensions a = 7.749(1), b = 9.854(2), c = 10.100(1) Å;  $\alpha = 101.45(1), \beta = 103.81(1), \gamma = 95.46(1)^{\circ}, Z = 2.$ Compound 2 crystallizes in the space group  $P\bar{1}$  as well, cell dimensions being a = 8.790(2), b =9.839(3), c = 11.580(4) Å;  $\alpha = 75.42(2)$ ,  $\beta =$ 71.64(2),  $\gamma = 86.92(2)^{\circ}$ , Z = 2. pH-dependent <sup>1</sup>H NMR spectra of 2 in D<sub>2</sub>O have been recorded in the range  $0.4 < pH^* < 13.5$  and are indicative of two acid/base equilibria, viz.

$$[(\mathrm{NH}_{2}\mathrm{CH}_{3})_{2}\mathrm{Pt}(1-\mathrm{MeC})(\mathrm{glyH})]^{2+} \xrightarrow{-\mathrm{H}^{+}}_{+\mathrm{H}^{+}} 2 \xrightarrow{-\mathrm{H}^{+}}_{+\mathrm{H}^{+}}$$
$$(\mathrm{NH}_{2}\mathrm{CH}_{3})_{2}\mathrm{Pt}(1-\mathrm{MeC}^{-})(\mathrm{gly})$$

with  $pK_a$  values of 2.5 and c. 12.5.

#### Introduction

Interest in ternary complexes of Pt(II) and Pd(II) with amino acids (peptides) and nucleobases (nucleic acids) has led to several preparative and solution studies in recent years [1-4]. Structural studies, on the other hand, appear to be very rare. In fact, there seems to be only a single example, a Pd(II) complex containing gly-L-tyr and cytidine [5]. As part of a systematic study on mixed nucleobase, amino acid

complexes of *cis*- and *trans*-diamineplatinum(II), which could serve as models for cross-linking reactions with nucleic acids and proteins [6], *trans*-[(NH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>Pt(1-MeC- $N^3$ )(gly-N)]NO<sub>3</sub>·2H<sub>2</sub>O (1-MeC = 1-methylcytosine, gly = glycine anion) has been prepared and its crystal structure determined. The title compound was obtained via the precursor *trans*-[(NH<sub>3</sub>CH<sub>3</sub>)<sub>2</sub>Pt(1-MeC- $N^3$ )Cl]Cl·H<sub>2</sub>O, the crystal structure of which is reported as well.

#### Experimental

1-MeC [7] and trans- $(NH_2CH_3)_2PtCl_2$  [8] were prepared as previously published; gly was obtained from Sigma. trans- $[(NH_2CH_3)_2Pt(1-MeC)Cl]Cl\cdotH_2O$ (1) was obtained as follows: 1 mmol trans- $(NH_2CH_3)_2PtCl_2$ , 1 mmol 1-MeC and 3 mmol NaCl were stirred in 30 ml H<sub>2</sub>O for 60 h at 40 °C. The resulting slightly yellow solution was evaporated to dryness by rotary evaporation. The residue was briefly treated with 5 ml of water and then filtered from unreacted trans- $(NH_2CH_3)_2PtCl_2$ . The resulting colorless solution was allowed to evaporate at 4 °C. The product formed was recrystallized from water, giving 283 mg of colorless cubes. Anal. Calc. for  $[(NH_2CH_3)_2Pt(C_5H_7N_3O)Cl]Cl\cdotH_2O$ : C, 17.8; H, 4.1; N, 14.9. Found: C, 17.7; H, 4.0; N, 14.8%.

trans-[(NH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>Pt(1-MeC)(gly)]NO<sub>3</sub>·2H<sub>2</sub>O, (2) was prepared in the following way: 0.35 mmol of 1, 0.7 mmol AgNO<sub>3</sub> and 0.7 mmol gly were stirred in 2 ml H<sub>2</sub>O for 72 h at 60 °C (stoppered test tube), filtered from AgCl and slowly allowed to evaporate at 4 °C. The product formed was recrystallized from water, giving 143 mg of colorless cubes. *Anal.* Calc. for trans-[(NH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>Pt(C<sub>5</sub>H<sub>7</sub>N<sub>3</sub>O)(C<sub>2</sub>H<sub>4</sub>NO<sub>2</sub>)]-(NO<sub>3</sub>)·2H<sub>2</sub>O: C, 19.5; H, 4.6; N, 17.7. Found: C, 19.4; H, 4.1; N, 18.1%.

Details concerning the X-ray data collection and structure determinations are as follows. Crystal size  $0.50 \times 0.20 \times 0.30$  mm (1),  $0.30 \times 0.15 \times 0.08$  mm (2), triclinic space group  $P\bar{1}$ , a = 7.749(1), b = 9.854(2), c = 10.100(1) Å,  $\alpha = 101.45(1)$ ,  $\beta =$ 

© Elsevier Sequoia/Printed in Switzerland

0020-1693/90/\$3.50

<sup>\*</sup>Author to whom correspondence should be addressed.

103.81(1),  $\gamma = 95.46(1)^\circ$ , U = 725.7(2) Å<sup>3</sup>, Z = 2,  $D_{c} = 2.147 \text{ g cm}^{-3}$  (1); triclinic space group  $P\overline{1}$ , a =8.790(2), b = 9.839(3), c = 11.580(4) Å,  $\alpha =$ 75.42(2),  $\beta = 71.64(2)$ ,  $\gamma = 86.92(2)^{\circ}$ , U = 919.6(5)Å<sup>3</sup>, Z = 2,  $D_c = 2.002$  g cm<sup>-3</sup> (2). A total of 5315 reflections were collected ( $\omega/2\theta$  scans,  $\theta_{max} = 25^\circ$ , whole sphere in reciprocal space). After averaging  $(R_{int} = 0.022)$  2583 independent reflections were obtained. For the final structure refinement 2553 reflections with  $F \ge 3.0\sigma(F)$  were used (1). In the case of 2 a total of 9146 reflections were collected  $(3.0^{\circ} \le 2\theta \le 55.0^{\circ})$ , whole sphere in reciprocal space). After averaging  $(R_{int} = 0.069)$  4272 independent reflections were obtained. For the final refinement 4083 reflections with  $F \ge 3.0\sigma(F)$  were used. Lp and empirical absorption corrections via  $\psi$ -scans were applied for 1 and 2 and in the case of 2 a decay correction up to 10%.

The position of the Pt atom was determined by direct methods (SHELXTL PLUS) [9]. The other non-hydrogen atoms were located by subsequent  $\Delta F$ -syntheses. H atoms were arbitrarily placed in geometrically calculated positions (C-H, N-H 0.96 Å). All non-H atoms were refined with anisotropic thermal parameters and H atoms with a common isotropic temperature factor. The final values for R and  $R_w$  are 0.037 and 0.042 (1) and 0.025 and 0.026 (2) respectively  $(w^{-1} = \sigma^2(F) +$  $0.0015F^2$  (1);  $w^{-1} = \sigma^2(F) + 0.00043F^2$ ) (2). In Tables 1 and 2 the atomic coordinates and equivalent isotropic temperature factors (calculated by  $U_{eq}$  =  $(1/3)\Sigma_i\Sigma_jU_{ij}a_i^*a_i^*a_i\cdot a_j$  are listed. Complex scattering factors were taken from ref. 10. Other programs used are given in refs. 11-14.

TABLE 1. Atomic coordinates and equivalent isotropic displacement parameters  $({\mathbb A}^2\times 10^4)$  for 1

|       | x          | У           | 2           | $U_{eq}/U^{a}$ |
|-------|------------|-------------|-------------|----------------|
| Pt(1) | 0.00312(2) | -0.26680(2) | -0.07392(2) | 243            |
| Cl(1) | -0.0398(3) | -0.3027(2)  | 0.1339(2)   | 443            |
| Cl(2) | 0.5749(2)  | 0.4199(2)   | 0.2950(2)   | 494            |
| O(1)  | 0.528(1)   | 0.2791(7)   | 0.5546(8)   | 769            |
| O(2)  | 0.2545(7)  | -0.0444(5)  | -0.1410(5)  | 394            |
| N(1)  | 0.1828(7)  | -0.0966(5)  | -0.3812(5)  | 293            |
| N(3)  | 0.0406(8)  | -0.2347(6)  | -0.2588(5)  | 244            |
| N(4)  | -0.1650(8) | -0.4305(6)  | -0.3837(6)  | 372            |
| N(5)  | -0.2285(8) | -0.1748(7)  | -0.0966(7)  | 366            |
| N(6)  | 0.2290(9)  | -0.3638(7)  | -0.0454(7)  | 368            |
| C(1)  | 0.306(1)   | 0.0240(9)   | -0.3767(9)  | 521            |
| C(2)  | 0.1668(8)  | -0.1215(7)  | -0.2523(6)  | 287            |
| C(4)  | -0.0473(9) | -0.3216(7)  | -0.3806(7)  | 311            |
| C(5)  | -0.0254(9) | -0.2937(7)  | -0.5114(6)  | 342            |
| C(6)  | 0.0901(9)  | -0.1843(8)  | -0.5038(7)  | 359            |
| C(11) | -0.252(1)  | -0.0727(9)  | -0.1914(9)  | 500            |
| C(12) | 0.387(1)   | -0.286(1)   | 0.0694(8)   | 534            |

 $^{\mathbf{a}}U_{\mathbf{eq}} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i}^{*}a_{j}^{*}\mathbf{a}_{i}^{*}\mathbf{a}_{j}.$ 

TABLE 2. Atomic coordinates and equivalent isotropic displacement parameters ( $A^2 \times 10^4$ ) for 2

|        | x          | у          | Z          | $U_{\mathbf{eq}}/U^{\mathbf{a}}$ |
|--------|------------|------------|------------|----------------------------------|
| Pt(1)  | 0.21522(2) | 0.23675(1) | 0.15017(1) | 272                              |
| O(2b)  | 0.3211(5)  | 0.1178(3)  | 0.3811(3)  | 558                              |
| O(21a) | -0.0455(6) | 0.1836(4)  | -0.1939(4) | 660                              |
| O(22a) | 0.1193(4)  | 0.0193(3)  | -0.1416(3) | 411                              |
| O(71)  | 0.7954(6)  | 0.4131(5)  | 0.0975(4)  | 786                              |
| O(72)  | 0.7186(7)  | 0.4463(6)  | 0.2816(5)  | 978                              |
| O(73)  | 0.5593(5)  | 0.4856(5)  | 0.1708(5)  | 721                              |
| O(8)   | 0.7654(4)  | 0.1227(4)  | 0.6792(3)  | 534                              |
| O(9)   | 0.4986(4)  | 0.2394(4)  | 0.8044(3)  | 559                              |
| N(1a)  | 0.2015(4)  | 0.1524(3)  | 0.0078(3)  | 316                              |
| N(1b)  | 0.3042(5)  | 0.2991(4)  | 0.4714(3)  | 474                              |
| N(3b)  | 0.2312(4)  | 0.3237(3)  | 0.2889(3)  | 338                              |
| N(4b)  | 0.1494(5)  | 0.5382(4)  | 0.1938(4)  | 508                              |
| N(5)   | -0.0262(4) | 0.1959(4)  | 0.2359(3)  | 367                              |
| N(6)   | 0.4575(4)  | 0.2735(4)  | 0.0628(3)  | 367                              |
| N(7)   | 0.6898(5)  | 0.4465(4)  | 0.1855(4)  | 449                              |
| C(1a)  | 0.0954(5)  | 0.2240(4)  | -0.0631(4) | 348                              |
| C(1b)  | 0.3746(9)  | 0.2112(7)  | 0.5638(6)  | 754                              |
| C(2a)  | 0.0553(5)  | 0.1343(4)  | -0.1410(4) | 358                              |
| C(2b)  | 0.2876(5)  | 0.2400(5)  | 0.3803(4)  | 398                              |
| C(4b)  | 0.1931(5)  | 0.4601(4)  | 0.2881(4)  | 388                              |
| C(5)   | -0.0872(6) | 0.1516(6)  | 0.3739(5)  | 563                              |
| C(5b)  | 0.2029(6)  | 0.5145(5)  | 0.3878(4)  | 466                              |
| C(6)   | 0.5591(6)  | 0.1509(5)  | 0.0881(6)  | 586                              |
| C(6b)  | 0.2585(6)  | 0.4329(6)  | 0.4750(4)  | 496                              |

 $^{\mathbf{a}}U_{\mathbf{eq}} = (1/3)\Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j.$ 

<sup>1</sup>H NMR spectra were recorded in  $D_2O$  (TSP internal reference) on a 300-MHz Bruker AM 300 spectrometer. pD values were determined by means of a glass electrode and addition of 0.4 to the pH meter reading. For the determination of  $pK_a$  values the uncorrected (pH\*) values were taken. NaOD and DNO<sub>3</sub> were applied to get the desired acidity (basicity).

# **Results and Discussion**

#### X-ray Structures

Figure 1 depicts *trans*- $[(NH_2CH_3)_2Pt(1-MeC)Cl]-Cl \cdot H_2O$  (1) and Fig. 2 gives a stereoscopic view of the unit cell. Bond lengths and angles are given in Table 3. Pt displays a square-planar coordination sphere with slight deviations of two of the angles from 90°. The Pt1-Cl1 distance is not significantly different from that in *trans*- $(NH_2CH_3)_2PtCl_2$  [8], and the Pt-NH<sub>2</sub>(CH<sub>3</sub>) entities in 1 display similar orientations as in the former. The 1-MeC ligand, which is coordinated to Pt1 via N3, forms a large dihedral angle of  $81.54^\circ$  with the Pt1,Cl1,N6,N5 coordination plane. Its orientation relative to the Pt coordination plane is not a consequence of intracomplex hydrogen bond formation.

The geometry of the 1-MeC ligand, which is essentially planar (largest deviations O2, 0.05 Å; C1, 0.025 Å), is normal and compares well with a large number of Pt(II) complexes of the 1-MeC [15], including trans-[(NH<sub>3</sub>)<sub>2</sub>Pt(1-MeC)Cl]Cl·1.5H<sub>2</sub>O [16].

Intermolecular hydrogen bonding in 1 includes a pair of H bonds between N5 and O2 of two centrosymmetrically related cations (2.95(1) Å) as well as several contacts between amine protons of the CH<sub>3</sub>NH<sub>2</sub> ligands and both coordinated and ionic chloride (Table 4).

Compound 2 and its atom numbering scheme are shown in Fig. 3 and bond lengths and angles are listed in Table 5. Pt1 is coordinated by two  $NH_2(CH_3)$ groups in *trans*-orientation, a 1-MeC ring and a deprotonated glycine. Binding to the nucleobase is through N3 and to the glycinate anion via the amino



Fig. 1. View and atom numbering scheme of *trans*- $[(CH_3NH_2)_2Pt(1-MeC)C1]Cl+H_2O(1)$ .

Ó

0

0

| TABLE 3. | Bond | distances | (A) and | angles (°) | for 1 |
|----------|------|-----------|---------|------------|-------|
|          |      |           |         |            |       |

| Pt(1)-Cl(1)          | 2.290(2) |
|----------------------|----------|
| Pt(1) - N(3)         | 2.037(6) |
| Pt(1) - N(5)         | 2.072(7) |
| Pt(1) - N(6)         | 2.061(7) |
| O(2) - C(2)          | 1.224(6) |
| N(1)-C(1)            | 1.44(1)  |
| N(1)-C(2)            | 1.403(9) |
| N(1)-C(6)            | 1.352(7) |
| N(3) - C(2)          | 1.392(9) |
| N(3)-C(4)            | 1.334(7) |
| N(4)C(4)             | 1.331(9) |
| N(5)-C(11)           | 1.52(1)  |
| N(6) - C(12)         | 1.491(9) |
| C(4) - C(5)          | 1.45(1)  |
| C(5)C(6)             | 1.31(1)  |
|                      |          |
| N(5) - Pt(1) - N(6)  | 177.3(3) |
| N(3)-Pt(1)-N(6)      | 89.6(3)  |
| N(3)-Pt(1)-N(5)      | 92.9(3)  |
| Cl(1) - Pt(1) - N(6) | 90.6(2)  |
| Cl(1) - Pt(1) - N(5) | 87.0(2)  |
| Cl(1) - Pt(1) - N(3) | 179.8(2) |
| C(2) - N(1) - C(6)   | 121.4(6) |
| C(1)-N(1)-C(6)       | 121.6(6) |
| C(1) - N(1) - C(2)   | 117.0(6) |
| Pt(1)-N(3)-C(4)      | 121.4(5) |
| Pt(1) - N(3) - C(2)  | 117.2(4) |
| C(2)-N(3)-C(4)       | 121.4(6) |
| Pt(1) - N(5) - C(11) | 117.4(5) |
| Pt(1) - N(6) - C(12) | 115.9(5) |
| N(1)-C(2)-N(3)       | 116.1(5) |
| O(2) - C(2) - N(3)   | 122.3(5) |
| O(2) - C(2) - N(1)   | 121.5(6) |
| N(3)-C(4)-N(4)       | 120.2(6) |
| N(4) - C(4) - C(5)   | 119.0(6) |
| N(3)-C(4)-C(5)       | 120.6(6) |
| C(4) - C(5) - C(6)   | 117.1(6) |
| N(1)-C(6)-C(5)       | 123.1(6) |



Fig. 2. Stereoview of the unit cell of 1.

0

0

٥

a

198

| Compound 1              |          |                               |          |
|-------------------------|----------|-------------------------------|----------|
| $N(5)O(2)^{1}$          | 2.953(8) | N(5)-H(5)O(2)                 | 155.3(7) |
| $N(5)Cl(2)^{1}$         | 3.366(6) | N(5) - H(5B) Cl(2)            | 161.8(7) |
| $N(6)Cl(2)^2$           | 3.226(8) | $N(6) - H(6A) \dots Cl(2)$    | 163.7(7) |
| $N(6)Cl(1)^3$           | 3.322(7) | N(6) - H(6B)Cl(1)             | 143.7(7) |
| Compound 2              |          |                               |          |
| N(6)O(73) <sup>0</sup>  | 2.990(7) | N(6)-H(61)O(73)               | 172.8(4) |
| N(5)O(22A) <sup>1</sup> | 2.874(6) | N(5)-H(51)O(22A)              | 178.5(4) |
| $N(1A)O(22A)^{1}$       | 3.106(4) | $N(1A) - H(11A) \dots O(22A)$ | 124.9(4) |
| $N(1A)O(9)^2$           | 2.907(4) | $N(1A) - H(12A) \dots O(9)$   | 156.4(4) |
| N(6)O(9) <sup>2</sup>   | 3.001(6) | N(6)-H(62)O(9)                | 146.2(4) |
| $N(6)O(73)^3$           | 3.152(6) | N(6)-H(62)O(73)               | 136.1(4) |
| N(5)O(71) <sup>4</sup>  | 3.015(6) | N(5)-H(52)O(71)               | 153.6(4) |
| N(5)O(72) <sup>4</sup>  | 3.270(7) | N(5)-H(52)O(72)               | 145.6(4) |

<sup>a</sup>Symmetry operations for 1: 1-x, -y, -z; 2-x+1, -y, -z; 3-x, -y-1, -z. Symmetry operations for 2: 0x, y, z; 1-x, -y, -z; 2x, y, z - 1; 3-x+1, -y + 1, -z; 4x - 1, y, z. <sup>b</sup>The H atoms were placed in calculated positions and the estimated standard deviations of the positional coordinates of the atoms to which the H atoms are bound were attributed to the positional coordinates of the estimated standard deviations of the H atoms. Therefore the estimated standard deviations of the angles at the H atoms are too low.



Fig. 3. View and atom numbering scheme of trans-[(CH<sub>3</sub>NH<sub>2</sub>)<sub>2</sub>Pt(1-MeC)(gly-N)]NO<sub>3</sub>·2H<sub>2</sub>O (2).

group. The arrangement of the monodentate glycinate ligand is such that, unlike in glycinate or thioglycinate chelates [17], the carboxylate group has undergone rotation about the NH<sub>2</sub>-CH<sub>2</sub> bond leading to an extended structure with the COO<sup>-</sup> group pointing away from the metal. A similar situation is envisaged in a recently described alanine complex of Pt(II), trans-Cl<sub>2</sub>Pt(ala)<sub>2</sub> [18]. As a consequence, there are no short intracomplex distances between the nucleobase and the amino acid in 2, and the 1-MeC ring adopts an orientation relative to the Pt coordination plane that is not too different from that observed in 1 (dihedral angle 80.35°). The only major difference of the trans-(NH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>Pt(1-MeC) entities in 1 and 2 refers to the relative orientation of the two methyl groups. Since no immediate effect of the gly ligand on this difference can be seen, we suggest that it is essentially a consequence of packing. In fact, the CH<sub>3</sub> groups of both methylamine ligands in 2 have close contacts with nitrate oxygens (c. 3.39 Å), whereas in 1 only one of the methyl groups

TABLE 5. Bond distances (Å) and angles (°) in 2

| Pt(1)-N(1a)           | 2.061(4) |
|-----------------------|----------|
| Pt(1)-N(3b)           | 2.045(4) |
| Pt(1) - N(5)          | 2.053(3) |
| Pt(1) - N(6)          | 2.057(3) |
| O(2b)-C(2b)           | 1.221(6) |
| O(21a)-C(2a)          | 1.242(7) |
| O(22a) - C(2a)        | 1.236(5) |
| O(71) - N(7)          | 1.244(6) |
| O(72)-N(7)            | 1.216(8) |
| O(73)–N(7)            | 1.240(6) |
| N(1a)-C(1a)           | 1.469(6) |
| N(1b)-C(1b)           | 1.473(8) |
| N(1b)-C(2b)           | 1.373(7) |
| N(1b)-C(6b)           | 1.363(7) |
| N(3b)-C(2b)           | 1.375(6) |
| N(3b)C(4b)            | 1.364(6) |
| N(4b)-C(4b)           | 1.319(7) |
| N(5)C(5)              | 1.472(6) |
| N(6)-C(6)             | 1.487(6) |
| C(1a)-C(2a)           | 1.533(7) |
| (C4b)–C(5b)           | 1.416(8) |
| C(5b)-C(6b)           | 1.328(7) |
| N(5)-Pt(1)-N(6)       | 178.7(2  |
| N(3b) - Pt(1) - N(6)  | 89.4(2   |
| N(3b)-Pt(1)-N(5)      | 91.7(2   |
| N(1a) - Pt(1) - N(6)  | 89.9(2   |
| N(1a) - Pt(1) - N(5)  | 89.0(2   |
| N(1a) - Pt(1) - N(3b) | 178.9(2  |
| Pt(1) - N(1a) - C(1a) | 115.7(3  |
| C(2b)-N(1b)-C(6b)     | 121.3(4  |
| C(1b) - N(1b) - C(6b) | 122.0(5  |
| C(1b) - N(1b) - C(2b) | 116.8(5  |
| Pt(1)-N(3b)-C(4b)     | 121.4(3  |
| Pt(1) - N(3b) - C(2b) | 116.9(3  |
|                       |          |

(continued)

TABLE 5. (continued)

| C(2b) - N(3b) - C(4b)   | 121.6(4) |
|-------------------------|----------|
| Pt(1)-N(5)-C(5)         | 118.8(3) |
| Pt(1)-N(6)-C(6)         | 115.0(3) |
| O(72)-N(7)-O(73)        | 121.3(5) |
| O(71) - N(7) - O(73)    | 118.8(5) |
| O(71) - N(7) - O(72)    | 119.8(5) |
| N(1a) - C(1a) - C(2a)   | 112.3(4) |
| O(22a) - C(2a) - C(1a)  | 118.4(4) |
| O(21a) - C(2a) - C(1a)  | 115.4(4) |
| O(21a) - C(2a) - O(22a) | 126.2(5) |
| N(1b) - C(2b) - N(3b)   | 117.4(4) |
| O(2b) - C(2b) - N(3b)   | 121.5(4) |
| O(2b) - C(2b) - N(1b)   | 121.1(4) |
| N(3b) - C(4b) - N(4b)   | 119.0(4) |
| N(4b) - C(4b) - C(5b)   | 121.8(4) |
| N(3b) - C(4b) - C(5b)   | 119.2(4) |
| C(4b) - C(5b) - C(6b)   | 118.4(5) |
| N(1b)-C(6b)-C(5b)       | 121.9(5) |

(C11) displays a similar contact (to O2 of the 1-MeC rings). With  $cis\cdot(NH_2CH_3)_2PtCl_2$ , two crystalline modifications, differing in the relative orientations of the methyl groups, have been observed as well [19]. A stereoview of the unit cell is given in Fig. 4 and short contacts are listed in Table 4. As can be seen, extensive hydrogen bonding exists between the amino protons of the CH<sub>3</sub>NH<sub>2</sub> ligands and the glycine and nitrate, water, and carboxylate oxygens.

#### <sup>1</sup>H NMR Spectra

The <sup>1</sup>H NMR spectrum of 1 is normal with two doublets for H5 and H6 of the 1-MeC ring,(6.059 ppm, 7.652 ppm,  ${}^{3}J = 7.4$  Hz) and a singlet (3.441 ppm) for the N-CH<sub>3</sub> group. The CH<sub>2</sub> resonance of the gly ligand does not display any <sup>195</sup>Pt coupling (300 MHz) and, unlike with the related *cis*-[(NH<sub>3</sub>)<sub>2</sub>-Pt(1-MeC)(gly-N)]<sup>+</sup> compound [3], no temporary

coupling between the amino group of gly and CH<sub>2</sub> of gly was observed. However, the CH<sub>3</sub> resonances of the amine ligands in both 1 and 2 show this phenomenon. In acidic medium, the CH<sub>3</sub> signals of freshly prepared samples display triplet structure  $(1:2:1, J \simeq 6.3 \text{ Hz})$  which slowly, and in neutral or alkaline solution quickly is lost and simplifies to a singlet. This process is accompanied by the loss of the broad NH<sub>2</sub> resonance of the amine ligand at c. 4.6 ppm, indicating that  ${}^{3}J$  coupling between NH and CH protons is taking place as long as isotopic  $NH \rightarrow ND$  exchange is not substantial. The resulting singlet shows signs of <sup>195</sup>Pt coupling (broad, illresolved satellites,  ${}^{3}J \simeq 40$  Hz). The  ${}^{1}$ H resonances of the non-exchangeable protons of 2 undergo pH\* dependent chemical shifts (Fig. 5), indicative of the following equilibria:

$$[a_{2}Pt(1-MeC)(glyH-N)]^{2+} \xrightarrow{-H^{+}}_{+H^{+}}$$
$$[a_{2}Pt(1-MeC)(gly-N)]^{+} \xrightarrow{-H^{+}}_{+H^{+}} a_{2}Pt(1-MeC^{-})(gly-N)$$

 $pK_a$  values are 2.5 and c. 12.5 respectively, very similar to those of the *cis*-compound. Again we note the considerable acidification of glyH on Pt binding via the amino group [3] and the astonishing increase in NH<sub>2</sub> acidity of the 1-MeC ligand. In the case of the *cis*-compound, we have tentatively attributed this to the possibility of intracomplex hydrogen bond formation between the carboxylate group and NH<sub>2</sub>(4) of 1-MeC. In our ternary compound, a similar H bond could occur, although we estimate from model building that an intracomplex H bond should be around 3 Å or slightly longer in the case of a *trans*-geometry. While this interpretation indeed is not wholly satisfactory, we definitely feel that the



Fig. 4. Stereoview of the unit cell of 2.



Fig. 5.  $pH^*$  dependence of <sup>1</sup>H NMR chemical shifts of resonances of 2.

cytosine-NH<sub>2</sub> acidity should not be attributed to the charge (+1) of the complex. In *cis*-[(NH<sub>3</sub>)<sub>2</sub>Pt(1-MeC)-(1-MeU)]<sup>+</sup> (1-MeU = 1-methyluracil anion), the charge is identical, yet 1-MeC deprotonation does not even start at pD 13–14 [20].

#### Supplementary Material

Positional parameters and anisotropic temperature factors of 1, short contacts and a listing of observed and calculated structure factors can be obtained from the Fachinformationszentrum Karlsruhe, D-7514 Eggenstein-Leopoldshafen 2 under CSD 53879 on request. Requests should be accompanied by the complete literature citation.

# Acknowledgement

We thank the Fonds der Chemischen Industrie for financial support.

# References

- 1 P. I. Vestues and R. B. Martin, *Inorg. Chim. Acta*, 55 (1981) 99.
- 2 (a) A. Garoufis, R. Haran, M. Pasdeloup, J. P. Laussac and N. Hadjiliadis, J. Inorg. Biochem., 31 (1987) 65;
  (b) S. Kasselouri, A. Garoufis and N. Hadjiliadis, Inorg. Chim. Acta, 135 (1987) L23.
- 3 F. Schwarz, B. Lippert, A. Iakovidis and N. Hadjiliadis, Inorg. Chim. Acta, 168 (1990) 275.
- 4 (a) B. T. Khan, G. N. Goud and S. V. Kumari, *Inorg. Chim. Acta*, 80 (1983) 145; (b) B. T. Khan, S. V. Kumari and G. N. Goud, *J. Coord. Chem.*, 12 (1982) 19.
- 5 M. Sabat, K. A. Satyshur and M. Sundaralingam, J. Am. Chem. Soc., 105 (1983) 976.
- 6 (a) S. J. Lippard and J. D. Hoeschele, *Proc. Natl. Acid.* Sci. U.S.A., 76 (1979) 6091; (b) J. Filipski, K. W. Kohn and W. M. Bonner, *FEBS Lett.*, 152 (1983) 105; (c) Z. M. Banjar, L. S. Hnilica, R. C. Briggs, J. Stein and G. Stein, *Biochemistry*, 23 (1984) 1921.
- 7 T. J. Kistenmacher, M. Rossi, J. P. Caradonna and L. G. Marzilli, Adv. Mol. Relax. Interact. Processes, 15 (1979) 119.
- 8 J. Arpalathi, B. Lippert, H. Schöllhorn and U. Thewalt, Inorg. Chim. Acta, 153 (1988) 45.
- 9 G. M. Sheldrick, SHELXTL PLUS, (Release 3.4) for Nicolet R 3 m/V Crystallographic Systems, University of Göttingen, Göttingen, F.R.G., 1987.
- 10 International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, 1974.
- 11 M. Nardelli, Comput. Chem., 7 (1983) 95.
- 12 D. E. Williams, PCK 83, QCPE Program, No. 481, University of Louisville, Louisville, KY, 1984.
- 13 A. L. Spek, in D. Sayre (ed.), Computational Crystallography, Clarendon Press, Oxford, 1982, p. 528.
- 14 Y. Le Page, J. Appl. Crystallogr., 20 (1987) 264.
- 15 (a) R. Beyerle-Pfnür, B. Brown, R. Faggiani, B. Lippert and C. J. L. Lock, *Inorg. Chem.*, 24 (1985) 4001; (b) H. Schöllhorn, U. Thewalt, G. Raudaschl-Sieber and B. Lippert, *Inorg. Chim. Acta*, 124 (1986) 207, and refs. therein.
- 16 J. F. Britten, Ph.D. Thesis, McMaster University, Hamilton, Ont., Canada, 1984.
- 17 (a) A. lakovidis, N. Hadjiliadis, H. Schöllhorn, U. Thewalt and G. Trötscher, *Inorg. Chim. Acta, 164* (1989) 221;
  (b) H. C. Freeman and M. L. Golomb, *Acta Crystallogr., Sect. B, 25* (1969) 1203; (c) I. Zahn, K. Polborn and W. Beck, *Chem. Ber., 122* (1989) 53.
- 18 V. Pavone, A. Lombardi, B. Di Blasio, E. Benedetti and C. Pedone, *Inorg. Chim. Acta*, 153 (1988) 171.
- 19 S. Wimmer, F. Wimmer, J. Jaud, N. P. Johnson and P. Castan, *Inorg. Chim. Acta*, 144 (1988) 25.
- 20 B. Lippert, U. Thewalt, H. Schöllhorn, D. M. L. Goodgame and R. W. Rollins, *Inorg. Chem.*, 23 (1984) 2807.