Mixed Nucleobase, Amino Acid Complexes of Pt(I1). Preparation and X-ray Structure of trans-[$(CH_3NH_2)_2$ **Pt(1-MeC-N³)(gly-N)]NO₃** \cdot **2H₂O and its Precursor** $trans_[(CH₃NH₂)₂Pt(1-MeC-N³)Cl]Cl·H₂O$

FERDINAND J. PESCH, HANS PREUT and BERNHARD LIPPERT* Fachbereich Chemie, Universität Dortmund, D-4600 Dortmund (F.R.G.) (Received June 12,1989; revised October 4,1989)

Abstract

The preparation and crystal structures of two Pt(II) complexes are reported. trans- $(MH_2CH_3)_2$ Pt- $(1-MeC)ClCl·H₂O (1)$ and *trans*- $[(NH₂CH₃)₂Pt(1 MeC$)(gly)] $NO₃·2H₂O$ (2) with 1-MeC = 1-methylcytosine and gly = glycine anion are considered a precursor (1) and a product (2) of a hypothetical cross-linking reaction of a *trans*-diamineplatinum(II) moiety with a nucleic acid and the amino terminus of a protein, peptide, or amino acid. Compound 1 crystallizes in the space group $P\bar{1}$ and has cell dimensions $a = 7.749(1)$, $b = 9.854(2)$, $c = 10.100(1)$ Å; $\alpha = 101.45(1), \ \beta = 103.81(1), \ \gamma = 95.46(1)^\circ, \ Z = 2.$ Compound 2 crystallizes in the space group $P\bar{1}$ as well, cell dimensions being $a = 8.790(2)$, $b =$ 9.839(3), $c = 11.580(4)$ Å; $\alpha = 75.42(2)$, $\beta =$ 71.64(2), $\gamma = 86.92(2)^{\circ}$, $Z = 2$. pH-dependent ¹H NMR spectra of 2 in D_2O have been recorded in the range $0.4 < pH^* < 13.5$ and are indicative of two acid/base equilibria, viz.

$$
[(NH2CH3)2Pt(1-MeC)(glyH)]2+ \frac{-H+}{+H+} 2 \frac{-H+}{+H+}(NH2CH3)2Pt(1-MeC-)(gly)
$$

with pK_a values of 2.5 and c. 12.5.

Introduction

Interest in ternary complexes of Pt(I1) and Pd(I1) with amino acids (peptides) and nucleobases (nucleic acids) has led to several preparative and solution studies in recent years $[1-4]$. Structural studies, on the other hand, appear to be very rare. In fact, there seems to be only a single example, a Pd(I1) complex containing gly-L-tyr and cytidine $[5]$. As part of a systematic study on mixed nucleobase, amino acid

complexes of *cis-* and trans-diamineplatinum(II), which could serve as models for cross-linking reactions with nucleic acids and proteins [6], trans- $\left[\text{(NH}_2\text{CH}_3\right)_2\text{Pt}(1\text{-MeC-}N^3)(\text{gly-}N)\right]\text{NO}_3\cdot 2\text{H}_2\text{O}$ $(1-MeC = 1-methylcytosine, gly = glycine anion) has$ been prepared and its crystal structure determined. The title compound was obtained via the precursor *trans*- $[(NH_3CH_3)_2Pt(1-MeC-N^3)Cl]Cl-H_2O$, the crystal structure of which is reported as well.

Experimental

1-MeC [7] and trans- $(NH_2CH_3)_2$ PtCl₂ [8] were prepared as previously published; gly was obtained from Sigma. trans- $[(NH_2CH_3)_2Pt(1-MeC)Cl]Cl·H_2O$ (1) was obtained as follows: 1 mmol *truns-* $(NH₂CH₃)₂PtCl₂$, 1 mmol 1-MeC and 3 mmol NaCl were stirred in 30 ml H_2O for 60 h at 40 °C. The resulting slightly yellow solution was evaporated to dryness by rotary evaporation. The residue was briefly treated with 5 ml of water and then filtered from unreacted trans- $(NH_2CH_3)_2$ PtCl₂. The resulting colorless solution was allowed to evaporate at 4 $^{\circ}$ C. The product formed was recrystallized from water, giving 283 mg of colorless cubes. Anal. Calc. for $[(NH₂CH₃)₂Pt(C₅H₇N₃O)Cl]Cl·H₂O$: C, 17.8; H, 4.1;N, 14.9. Found: C, 17.7; H, 4.0;N, 14.8%.

trans- $\left[\text{(NH}_2\text{CH}_3\right)_2\text{Pt}(1\text{-MeC})(\text{gly})\right]N\text{O}_3\cdot 2\text{H}_2\text{O}$, (2) was prepared in the following way: 0.35 mmol of **1,** 0.7 mmol $AgNO₃$ and 0.7 mmol gly were stirred in 2 ml H₂O for 72 h at 60 °C (stoppered test tube), filtered from AgCl and slowly allowed to evaporate at 4 "C. The product formed was recrystallized from water, giving 143 mg of colorless cubes. *Anal.* Calc. for $trans\{ (NH_2CH_3)_2Pt(C_5H_7N_3O)(C_2H_4NO_2) \}.$ $(NO₃)·2H₂O$: C, 19.5; H, 4.6; N, 17.7. Found: C, 19.4; H, 4.1; N, 18.1%.

Details concerning the X-ray data collection and structure determinations are as follows. Crystal size 0.50 X 0.20 X 0.30 mm **(l),** 0.30 X 0.15 X 0.08 mm (2), triclinic space group $P\bar{1}$, $a = 7.749(1)$, $b =$ 9.854(2), $c = 10.100(1)$ Å, $\alpha = 101.45(1)$, $\beta =$

0 Elsevier Sequoia/Printed in Switzerland

0020.1693/90/\$3.50

^{*}Author to whom correspondence should be addressed.

103.81(1), $\gamma = 95.46(1)^\circ$, $U = 725.7(2)$ \mathbb{A}^3 , $Z = 2$, D_c = 2.147 g cm⁻³ (1); triclinic space group P1, $a =$ 8.790(2), $b = 9.839(3)$, $c = 11.580(4)$ Å, $\alpha =$ 75.42(2), β = 71.64(2), γ = 86.92(2)°, U = 919.6(5) A^3 , $Z = 2$, $D_c = 2.002$ g cm⁻³ (2). A total of 5315 reflections were collected $(\omega/2\theta \text{ scans}, \theta_{\text{max}} = 25^{\circ})$, whole sphere in reciprocal space). After averaging $(R_{\text{int}} = 0.022)$ 2583 independent reflections were obtained. For the final structure refinement 2553 reflections with $F \geq 3.0\sigma(F)$ were used (1). In the case of 2 a total of 9146 reflections were collected $(3.0^{\circ} \le 2\theta \le 55.0^{\circ}$, whole sphere in reciprocal space). After averaging $(R_{int} = 0.069)$ 4272 independent reflections were obtained. For the final refinement 4083 reflections with $F \geq 3.0\sigma(F)$ were used. Lp and empirical absorption corrections via ψ -scans were applied for **1** and 2 and in the case of 2 a decay correction up to 10%.

The position of the Pt atom was determined by direct methods (SHELXTL PLUS) [9]. The other non-hydrogen atoms were located by subsequent ΔF -syntheses. H atoms were arbitrarily placed in geometrically calculated positions (C-H, N-H 0.96 A). All non-H atoms were refined with anisotropic thermal parameters and H atoms with a common isotropic temperature factor. The final values for R and R_w are 0.037 and 0.042 (1) and 0.025 and 0.026 (2) respectively $(w^{-1} = \sigma^2(F))$ 0.0015 F^2 (1); $w^{-1} = \sigma^2(F) + 0.00043F^2$) (2). In Tables 1 and 2 the atomic coordinates and equivalent isotropic temperature factors (calculated by U_{eq} = $(1/3)\Sigma_i\Sigma_jU_{ij}a_i^*a_j^*a_i\cdot a_j$ are listed. Complex scattering factors were taken from ref. 10. Other programs used are given in refs. $11-14$.

TABLE 1. Atomic coordinates and equivalent isotropic displacement parameters $(A^2 \times 10^4)$ for 1

	x	у	\mathbf{z}	U_{eq}/U^a
Pt(1)	0.00312(2)	$-0.26680(2)$	$-0.07392(2)$	243
Cl(1)	$-0.0398(3)$	$-0.3027(2)$	0.1339(2)	443
Cl(2)	0.5749(2)	0.4199(2)	0.2950(2)	494
O(1)	0.528(1)	0.2791(7)	0.5546(8)	769
O(2)	0.2545(7)	$-0.0444(5)$	$-0.1410(5)$	394
N(1)	0.1828(7)	$-0.0966(5)$	$-0.3812(5)$	293
N(3)	0.0406(8)	$-0.2347(6)$	$-0.2588(5)$	244
N(4)	$-0.1650(8)$	$-0.4305(6)$	$-0.3837(6)$	372
N(5)	$-0.2285(8)$	$-0.1748(7)$	$-0.0966(7)$	366
N(6)	0.2290(9)	$-0.3638(7)$	$-0.0454(7)$	368
C(1)	0.306(1)	0.0240(9)	$-0.3767(9)$	521
C(2)	0.1668(8)	$-0.1215(7)$	$-0.2523(6)$	287
C(4)	$-0.0473(9)$	$-0.3216(7)$	$-0.3806(7)$	311
C(5)	$-0.0254(9)$	$-0.2937(7)$	$-0.5114(6)$	342
C(6)	0.0901(9)	$-0.1843(8)$	$-0.5038(7)$	359
C(11)	$-0.252(1)$	$-0.0727(9)$	$-0.1914(9)$	500
C(12)	0.387(1)	$-0.286(1)$	0.0694(8)	534

 ${}^{\bf a}U_{\bf eq} = (1/3)\Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j.$

TABLE 2. Atomic coordinates and equivalent isotropic displacement parameters $(A^2 \times 10^4)$ for 2

	$\pmb{\mathcal{X}}$	у	z	$U_{\bf eq}/U^{\, \bf a}$
Pt(1)	0.21522(2)	0.23675(1)	0.15017(1)	272
O(2b)	0.3211(5)	0.1178(3)	0.3811(3)	558
O(21a)	$-0.0455(6)$	0.1836(4)	$-0.1939(4)$	660
O(22a)	0.1193(4)	0.0193(3)	$-0.1416(3)$	411
O(71)	0.7954(6)	0.4131(5)	0.0975(4)	786
O(72)	0.7186(7)	0.4463(6)	0.2816(5)	978
O(73)	0.5593(5)	0.4856(5)	0.1708(5)	721
O(8)	0.7654(4)	0.1227(4)	0.6792(3)	534
O(9)	0.4986(4)	0.2394(4)	0.8044(3)	559
N(1a)	0.2015(4)	0.1524(3)	0.0078(3)	316
N(1b)	0.3042(5)	0.2991(4)	0.4714(3)	474
N(3b)	0.2312(4)	0.3237(3)	0.2889(3)	338
N(4b)	0.1494(5)	0.5382(4)	0.1938(4)	508
N(5)	$-0.0262(4)$	0.1959(4)	0.2359(3)	367
N(6)	0.4575(4)	0.2735(4)	0.0628(3)	367
N(7)	0.6898(5)	0.4465(4)	0.1855(4)	449
C(1a)	0.0954(5)	0.2240(4)	$-0.0631(4)$	348
C(1b)	0.3746(9)	0.2112(7)	0.5638(6)	754
C(2a)	0.0553(5)	0.1343(4)	$-0.1410(4)$	358
C(2b)	0.2876(5)	0.2400(5)	0.3803(4)	398
C(4b)	0.1931(5)	0.4601(4)	0.2881(4)	388
C(5)	$-0.0872(6)$	0.1516(6)	0.3739(5)	563
C(5b)	0.2029(6)	0.5145(5)	0.3878(4)	466
C(6)	0.5591(6)	0.1509(5)	0.0881(6)	586
C(6b)	0.2585(6)	0.4329(6)	0.4750(4)	496

 ${}^{\bf a}U_{\bf eq} = (1/3)\Sigma_i\Sigma_jU_{ij}a_i{}^*a_j{}^*a_i\cdot a_j.$

¹H NMR spectra were recorded in D_2O (TSP internal reference) on a 300-MHz Bruker AM 300 spectrometer. pD values were determined by means of a glass electrode and addition of 0.4 to the pH meter reading. For the determination of pK_a values the uncorrected (pH*) values were taken. NaOD and $DNO₃$ were applied to get the desired acidity (basicity).

Results and Discussion

X-ray Structures

Figure 1 depicts trans- $[({\rm NH}_2, {\rm CH}_3), {\rm Pt}(1{\text -} {\rm MeC}){\rm Cl}]$ - $Cl·H₂O(1)$ and Fig. 2 gives a stereoscopic view of the unit cell. Bond lengths and angles are given in Table 3. Pt displays a square-planar coordination sphere with slight deviations of two of the angles from 90° . The Pt1-Cl1 distance is not significantly different from that in trans- $(NH_2CH_3)_2$ PtCl₂ [8], and the $Pt-MH_2(CH_3)$ entities in 1 display similar orientations as in the former. The l-MeC ligand, which is coordinated to Ptl via N3, forms a large dihedral angle of 81.54° with the Pt1,Cl1,N6,N5 coordination plane. Its orientation relative to the Pt coordination plane is not a consequence of intracomplex hydrogen bond formation.

The geometry of the l-MeC ligand, which is essentially planar (largest deviations 02, 0.05 A; C1, 0.025 \AA), is normal and compares well with a large number of Pt(II) complexes of the 1-MeC [15], including $trans \cdot [(NH_3)_2 Pt(1-MeC)Cl] Cl \cdot 1.5H_2O$ $[16]$.

Intermolecular hydrogen bonding in **1** includes a pair of H bonds between N5 and 02 of two centrosymmetrically related cations $(2.95(1)$ Å) as well as several contacts between amine protons of the CHaNH2 ligands and both coordinated and ionic chloride (Table 4).

Compound 2 and its atom numbering scheme are shown in Fig. 3 and bond lengths and angles are listed in Table 5. Pt1 is coordinated by two $NH₂(CH₃)$ groups in trans-orientation, a 1-MeC ring and a deprotonated glycine. Binding to the nucleobase is through N3 and to the glycinate anion via the amino

Fig. 1. View and atom numbering scheme of trans- $[(CH₃NH₂)₂Pt(1-MeC)Cl]Cl·H₂O(1).$

 \mathbf{o}

 \circ

 Ω

Fig. 2. Stereoview of the unit cell of 1.

 \circ

0

 \mathbf{o}

 \mathbf{o}

TABLE 4. Hydrogen bonding distances (A) and angles ($^{\circ}$) in 1 and 2^{a, b}

Compound 1			
$N(5)O(2)^{1}$	2.953(8)	$N(5)-H(5)O(2)$	155.3(7)
$N(5)$ Cl(2) ¹	3.366(6)	$N(5)-H(5B)$ Cl(2)	161.8(7)
$N(6)$ Cl(2) ²	3.226(8)	$N(6) - H(6A)$ Cl(2)	163.7(7)
$N(6) \dots C1(1)^3$	3.322(7)	$N(6) - H(6B)$ Cl(1)	143.7(7)
Compound 2			
$N(6)O(73)^{0}$	2.990(7)	$N(6) - H(61) \dots O(73)$	172.8(4)
$N(5)$ O $(22A)^1$	2.874(6)	$N(5)-H(51)O(22A)$	178.5(4)
$N(1A)O(22A)^{1}$	3.106(4)	$N(1A) - H(11A) \dots O(22A)$	124.9(4)
$N(1A)O(9)^2$	2.907(4)	$N(1A) - H(12A)O(9)$	156.4(4)
$N(6)O(9)^2$	3.001(6)	$N(6) - H(62)$ O(9)	146.2(4)
$N(6)O(73)^3$	3.152(6)	$N(6)-H(62)O(73)$	136.1(4)
$N(5) \dots O(71)^4$	3.015(6)	$N(5)-H(52)O(71)$	153.6(4)
$N(5)$ O $(72)^4$	3.270(7)	$N(5)-H(52)O(72)$	145.6(4)

 α Symmetry operations for 1: α , $-x$, $-y$, $-z$; α + 1, $-y$, $-z$; α , $-y$, $-z$, α , $-y$, $-z$, α , y , z , α , $-z;^{2}x,y,z - 1;^{3} - x + 1, -y + 1, -z;^{4}x - 1, y, z.$ bThe H atoms were placed in calculated positions and the estimated stan dard deviations of the positional coordinates of the atoms to which the H atoms are bound were attributed to the positional coordinates of the H atoms. Therefore the estimated standard deviations of the angles at the H atoms are too low.

Fig. 3. View and atom numbering scheme of trans- $[(CH₃NH₂)₂Pt(1-MeC)(gly-N)]NO₃·2H₂O (2).$

group. The arrangement of the monodentate glycinate ligand is such that, unlike in glycinate or thioglycinate chelates $[17]$, the carboxylate group has undergone rotation about the NH_2-CH_2 bond leading to an extended structure with the COO⁻ group pointing away from the metal. A similar situation is envisaged in a recently described alanine complex of Pt(II), trans-Cl₂Pt(ala)₂ [18]. As a consequence, there are no short intracomplex distances between the nucleobase and the amino acid in 2, and the l-MeC ring adopts an orientation relative to the Pt coordination plane that is not too different from that observed in 1 (dihedral angle 80.35°). The only major difference of the trans- $(NH_2CH_3)_2$ Pt(1-MeC) entities in **1** and 2 refers to the relative orientation of the two methyl groups. Since no immediate effect of the gly ligand on this difference can be seen, we suggest that it is essentially a consequence of packing. In fact, the $CH₃$ groups of both methylamine ligands in 2 have close contacts with nitrate oxygens (c, c) 3.39 A), whereas in **1** only one of the methyl groups

TABLE 5. Bond distances (A) and angles $(°)$ in 2

2.061(4)
2.045(4)
2.053(3)
2.057(3)
1.221(6)
1.242(7)
1.236(5)
1.244(6)
1.216(8)
1.240(6)
1.469(6)
1.473(8)
1.373(7)
1.363(7)
1.375(6)
1.364(6)
1.319(7)
1.472(6)
1.487(6)
1.533(7)
1.416(8)
1.328(7)
178.7(2
89.4(2
91.7(2
89.9(2
89.0(2
178.9(2
115.7(3
121.3(4
122.0(5
116.8(5
121.4(3
116.9(3

(continued)

) ١

TABLE 5. *(continued)*

$C(2b) - N(3b) - C(4b)$	121.6(4)
$Pt(1)-N(5)-C(5)$	118.8(3)
$Pt(1) - N(6) - C(6)$	115.0(3)
$O(72) - N(7) - O(73)$	121.3(5)
$O(71) - N(7) - O(73)$	118.8(5)
$O(71) - N(7) - O(72)$	119.8(5)
$N(1a) - C(1a) - C(2a)$	112.3(4)
$O(22a) - C(2a) - C(1a)$	118.4(4)
$O(21a) - C(2a) - C(1a)$	115.4(4)
$O(21a) - C(2a) - O(22a)$	126.2(5)
$N(1b) - C(2b) - N(3b)$	117.4(4)
$O(2b) - C(2b) - N(3b)$	121.5(4)
$O(2b) - C(2b) - N(1b)$	121.1(4)
$N(3b) - C(4b) - N(4b)$	119.0(4)
$N(4b) - C(4b) - C(5b)$	121.8(4)
$N(3b) - C(4b) - C(5b)$	119.2(4)
$C(4b) - C(5b) - C(6b)$	118.4(5)
$N(1b) - C(6b) - C(5b)$	121.9(5)

 $(C11)$ displays a similar contact (to O2 of the 1-MeC) rings). With cis (NH₂CH₃)₂PtCl₂, two crystalline modifications, differing in the relative orientations of the methyl groups, have been observed as well [19]. A stereoview of the unit cell is given in Fig. 4 and short contacts are listed in Table 4. As can be seen, extensive hydrogen bonding exists between the amino protons of the $CH₃NH₂$ ligands and the glycine and nitrate, water, and carboxylate oxygens.

'H NMR Spectra

The 'H NMR spectrum of **1** is normal with two doublets for H5 and H6 of the l-MeC ring(6.059 ppm, 7.652 ppm, $3J = 7.4$ Hz) and a singlet (3.441) ppm) for the N-CH₃ group. The CH₂ resonance of the gly ligand does not display any ¹⁹⁵Pt coupling (300 MHz) and, unlike with the related cis- $(NH_3)_2$ -Pt(1 -MeC)(gly-N)]⁺ compound [3], no temporary

coupling between the amino group of gly and $CH₂$ of gly was observed. However, the $CH₃$ resonances of the amine ligands in both **1** and 2 show this phenomenon. In acidic medium, the CH, signals of freshly prepared samples display triplet structure $(1:2:1, J \approx 6.3$ Hz) which slowly, and in neutral or alkaline solution quickly is lost and simplifies to a singlet. This process is accompanied by the loss of the broad $NH₂$ resonance of the amine ligand at c. 4.6 ppm, indicating that $3J$ coupling between NH and CH protons is taking place as long as isotopic $NH \rightarrow ND$ exchange is not substantial. The resulting singlet shows signs of ¹⁹⁵Pt coupling (broad, illresolved satellites, $3J \approx 40$ Hz). The ¹H resonances of the non-exchangeable protons of 2 undergo pH* dependent chemical shifts (Fig. 5), indicative of the following equilibria:

$$
[a_2Pt(1-MeC)(glyH-N)]^{2+} \frac{-H^+}{+H^+}
$$

$$
[a_2Pt(1-MeC)(gly-N)]^+ \frac{-H^+}{+H^+} a_2Pt(1-MeC^-(gly-N))
$$

 pK_a values are 2.5 and c. 12.5 respectively, very similar to those of the cis-compound. Again we note the considerable acidification of glyH on Pt binding via the amino group [3] and the astonishing increase in NH2 acidity of the I-MeC ligand. In the case of the cis-compound, we have tentatively attributed this to the possibility of intracomplex hydrogen bond formation between the carboxylate group and $NH₂(4)$ of 1-MeC. In our ternary compound, a similar H bond could occur, although we estimate from model building that an intracomplex H bond should be around 3 Å or slightly longer in the case of a trans-geometry. While this interpretation indeed is not wholly satisfactory, we definitely feel that the

Fig. 4. Stereoview of the unit cell of 2.

Fig. 5. pH^* dependence of ¹H NMR chemical shifts of resonances of 2.

cytosine-NH2 acidity should not be attributed to the charge (+1) of the complex. In cis- $[(NH₃)₂Pt(1-MeC)$ - $(1-MeU)^{+}$ $(1-MeU = 1$ -methyluracil anion), the charge is identical, yet 1 -MeC deprotonation does not even start at pD 13-14 [20].

Supplementary Material

Positional parameters and anisotropic temperature factors of 1, short contacts and a listing of observed and calculated structure factors can be obtained from the Fachinformationszentrum Karlsruhe, D-75 14 Eggenstein-Leopoldshafen 2 under CSD 53879 on request. Requests should be accompanied by the complete literature citation.

Acknowledgement

We thank the Fonds der Chemischen Industrie for financial support.

References

- 1 P. 1. Vestues and R. B. Martin, Inorg. *Chim. Acta, 55 (1981) 99.*
- 2 (a) A. Garoufis, R. Haran, M. Pasdeloup, J. P. Laussa and N. Hadjiliadis, *J. Inorg. Biochem.*, 31 (1987) 65; (b) S. Kasselouri, A. Garoufis and N. Hadjiliadis, *Inorg. Chim. Acta, 135 (1987) L23.*
- 3 F. Schwarz, B. Lippert, A. Iakovidis and N. Hadjiliadi Znorg. *Chim. Acta, 168 (1990) 275.*
- 4 (a) B. T. Khan, G. N. Goud and S. V. Kumari, Inorg. *Chim. Acta, 80 (1983) 145;* (b) B. T. Khan, S. V. Kumari and G. N. Goud, J. Coord. *Chem., 12 (1982)* 19.
- 5 M. Sabat, K. A. Satyshur and M. Sundaralingam, J. *Am.* Chem. Soc., 105 (1983) 976.
- 6 (a) S. J. Lippard and J. D. Hoeschele, Froc. *Natl. Acid. Sci. U.S.A., 76 (1979) 6091;* (b) J. Filipski, K. W. Kohn and W. M. Bonner, *FEBS Lett., 152* (1983) 105; (c) Z. M. Banjar, L. S. Hnilica, R. C. Briggs, J. Stein and G. Stein, *Biochemistry, 23 (1984) 1921.*
- I T. J. Kistenmacher, M. Rossi, J. P. Caradonna and L. G. Marzilli, Adv. Mol. Relax. Interact. Processes, 15 (1979) *119.*
- 8 J. Arpalathi, B. Lippert, H. Schöllhorn and U. Thewal *Inorg. Chim. Acta, 153 (1988) 45.*
- 9 *G.* M. Sheldrick, *SHELXTL PLUS,* (Release 3.4) for Nicolet R 3 m/V Crystallographic Systems, University of Göttingen, Göttingen, F.R.G., 1987
- 10 *International Tables for X-ray Crystallography,* Vol. IV, Kynoch Press, Birmingham, 1974.
- 11 M. Nardelli, *Comput. Chem., 7* (1983) *95.*
- 12 *D. E.* Williams, *PCK 83,* QCPE Program, No. 481, University of Louisville, Louisville, KY, 1984.
- 13 A. L. Spck, in D. Sayre (ed.), *Computational Crystallography,* Clarendon Press, Oxford, 1982. p. 528.
- 14 Y. Le Page, *J. Appl. Crystallogr., 20* (1987) 264.
- 15 (a) R. Beyerle-Pfnür, B. Brown, R. Faggiani, B. Lipper and C. J. L. Lock, *Inorg. Chem., 24 (1985)* 4001;(b) H. SchGllhorn, U. Thcwalt, G. Raudaschl-Sieber and B. Lippert, *Inorg. Chim. Acta, 124 (1986) 207,* and refs. therein.
- 16 J. F. Britten, *Ph.D. Thesis*, McMaster Universit Hamilton, Ont., Canada, 1984.
- 17 (a) A. lakovidis, N. Hadjiliadis, H. Schöllhorn, U. Thewa and G. TrGtscher, Inorg. *Chim. Acta, 164* (1989) 221; (b) H. C. Freeman and M. L. Golomb, *Acta Crystallogr., Sect. B, 25* (1969) 1203; (c) I. Zahn, K. Polborn and W. Beck, Chem. Ber., 122 (1989) 53.
- 18 V. Pavone, A. Lombardi, B. Di Blasio, E. Benedctti and C. Pedone, *Inorg. Chim. Acta, 153 (1988)* 17 1.
- 19 S. Wimmer, F. Wimmcr, J. Jaud, N. P. Johnson and P. Castan, *Inorg. Chim. Acta, I44 (1988) 25.*
- 20 B. Lippert, U. Thewalt, H. Schöllhorn, D. M. L. Goodgame and R. W. Rollins, *Inorg. Chem., 23* (1984) *2807.*